ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
S. Krupakar Murali, John F. Santarius, Gerald L. Kulcinski
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 841-853
Technical Note | doi.org/10.13182/FST08-A1739
Articles are hosted by Taylor and Francis Online.
Recent study of fusion reactions within an inertial electrostatic confinement (IEC) device revealed several significant modes of fusion: converged core, beam-target, beam-background, and charge-exchange reactions. In an attempt to understand the fusion product proton measurements in the IEC device, the advanced fuel D-D and D-3He fusion proton energy spectra were analyzed. For D-3He fusion, the beam-target reactions were found to dominate. Hence, the present study focuses on understanding the beam-target reactions and the corresponding proton energy spectra from such sources. This information helps in accurately calculating the proton flux for optimizing medical isotope production and other near-term applications, besides calibration of the proton detectors.A proton detector was used to measure the experimental data and the Monte Carlo stopping power and range in matter (SRIM) simulation code was used to explain the corresponding experimental observations. While the D-D proton spectrum from the IEC device showed combined Doppler and scatter broadening, the D-3He proton spectrum, besides showing the broadening, also shows some interesting characteristics such as a high-energy tail and a detector thickness-dependent energy spectrum. An extended high-energy tail occurs in the observed energy spectrum from the detector because some of the protons go through the wire before being detected, which reduces their total energy. Due to the higher proton stopping power in the detector at somewhat lower energies than the initial 14.7 MeV, these protons thus deposit a larger fraction of their energy and create the high-energy tail. These measurements show that the high-energy tail of the proton energy spectrum should be excluded from the total proton counts for an accurate proton rate measurement.