ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
S. Krupakar Murali, John F. Santarius, Gerald L. Kulcinski
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 841-853
Technical Note | doi.org/10.13182/FST08-A1739
Articles are hosted by Taylor and Francis Online.
Recent study of fusion reactions within an inertial electrostatic confinement (IEC) device revealed several significant modes of fusion: converged core, beam-target, beam-background, and charge-exchange reactions. In an attempt to understand the fusion product proton measurements in the IEC device, the advanced fuel D-D and D-3He fusion proton energy spectra were analyzed. For D-3He fusion, the beam-target reactions were found to dominate. Hence, the present study focuses on understanding the beam-target reactions and the corresponding proton energy spectra from such sources. This information helps in accurately calculating the proton flux for optimizing medical isotope production and other near-term applications, besides calibration of the proton detectors.A proton detector was used to measure the experimental data and the Monte Carlo stopping power and range in matter (SRIM) simulation code was used to explain the corresponding experimental observations. While the D-D proton spectrum from the IEC device showed combined Doppler and scatter broadening, the D-3He proton spectrum, besides showing the broadening, also shows some interesting characteristics such as a high-energy tail and a detector thickness-dependent energy spectrum. An extended high-energy tail occurs in the observed energy spectrum from the detector because some of the protons go through the wire before being detected, which reduces their total energy. Due to the higher proton stopping power in the detector at somewhat lower energies than the initial 14.7 MeV, these protons thus deposit a larger fraction of their energy and create the high-energy tail. These measurements show that the high-energy tail of the proton energy spectrum should be excluded from the total proton counts for an accurate proton rate measurement.