ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
John Sheffield, Mohamed Sawan
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 780-788
Technical Paper | doi.org/10.13182/FST53-780
Articles are hosted by Taylor and Francis Online.
Catalyzed D-D is the ultimate fusion cycle, because deuterium is essentially unlimited on earth. In this approach, the 3He and tritium fusion products are recycled to increase the charged particle fusion power. A difficulty with this fusion cycle is that the tritium from fusion, if left in the plasma, produces 14-MeV neutrons, leading to radiation damage comparable to that of the D-T cycle. This paper shows that the damage problems may be alleviated by removing tritium before it can burn. Fortunately, the charged particle fusion power from burning the tritium is small compared to that from the 3He and removing it from the plasma makes little difference to the plasma power balance. Ion cyclotron power might be used to pump out tritium. In this paper, we review the benefits of tritium removal, identify the issues associated with this approach, and determine illustrative parameters required for an advanced tokamak and an advanced stellarator.