ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
A. J. H. Donné, C. J. Barth
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 398-408
Technical Paper | Diagnostics | doi.org/10.13182/FST08-A1725
Articles are hosted by Taylor and Francis Online.
This paper will focus on two types of laser-aided diagnostics: Thomson scattering and laser-induced fluorescence. Thomson scattering is a very powerful diagnostic, which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is obtained by an incoherent summation over the scattered powers of the individual electrons. The scattering spectrum in this case is a reflection of the electron velocity distribution, from which local values for the electron temperature and density can be derived. In case the wavelength is larger than the Debye length, Thomson scattering can yield information on the ion velocity distribution and/or collective behavior of the electrons, as is the case with density fluctuations. Laser-induced fluorescence is particularly suited for studies of the ion population at the cooler, not-fully ionized, plasma edge.