ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The Meta-Vistra deal: A closer look
With last Friday's announcement regarding its vision for nuclear energy, Meta has entered into 20-year power purchase agreements (PPAs) for more than 2,600 MW of electricity from a combination of three Vistra-owned nuclear plants to support the tech behemoth's planned operations in the PJM region.
R.-D. Penzhorn, Y. Hatano, M. Matsuyama, Y. Torikai
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 45-53
Technical Paper | doi.org/10.13182/FST12-625
Articles are hosted by Taylor and Francis Online.
Stainless steel exposed to gaseous tritium characteristically shows a firmly trapped fraction of tritium in the surface layer, which is not fully removable by water at ambient temperature. Prolonged thermal treatment of tritium-loaded specimens at <443 K causes substantial depletion of the bulk but almost no depletion of the surface layer. For complete removal of hydrogen isotopes from the bulk and the surface, temperatures exceeding 573 K are necessary. Upon chemical etching virtually all tritium trapped in the surface layer appears in the etching solution as tritiated water. Following removal of the layer by chemical etching, the tritium-rich layer reappears after months of aging at ambient temperature with nearly the original tritium activity. Comparison of chronic tritium release rates into liquid water before and after etching reveals that the surface layer only marginally influences the rate. X-ray photoelectron spectroscopy provides evidence that during prolonged aging the surface layer continues to grow while at the same time trapping a fraction of bulk tritium released at ambient temperature. Experimental results suggest different mechanisms of hydrogen uptake and release by the bulk and surface layers. Inference of tritium activity in the bulk of aged or heat-exposed stainless steel material from surface activity measurements may depart significantly from reality.