ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
R. Keppens
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 135-143
Technical Paper | Equilibrium and Instabilities | doi.org/10.13182/FST08-A1699
Articles are hosted by Taylor and Francis Online.
The ideal MagnetoHydroDynamic (MHD) equations accurately describe the macroscopic dynamics of a perfectly conducting plasma. Adopting a continuum, single fluid description in terms of the plasma density , velocity v, thermal pressure p and magnetic field B, the ideal MHD system expresses conservation of mass, momentum, energy, and magnetic flux. This nonlinear, conservative system of 8 partial differential equations enriches the Euler equations governing the dynamics of a compressible gas with the dynamical influence - through the Lorentz force - and evolution - through the additional induction equation - of the magnetic field B. In multi-dimensional problems, the topological constraint expressed by the Maxwell equation B = 0, represents an additional complication for numerical MHD. Basic concepts of shock-capturing high-resolution schemes for computational MHD are presented, with an emphasis on how they cope with the thight physical demands resulting from nonlinearity, compressibility, conservation, and solenoidality.