ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Framatome, Ultra Safe partner to manufacture TRISO and FCM fuel
Framatome and Ultra Safe Nuclear announced on January 26 that they intend to form a joint venture to manufacture commercial quantities of tristructural isotropic (TRISO) particles and Ultra Safe’s proprietary fully ceramic microencapsulated (FCM) fuel.
The companies have signed a nonbinding agreement to integrate their resources to bring commercially viable, fourth-generation nuclear fuel to market for Ultra Safe’s micro-modular reactor (MMR) and other advanced reactor designs.
Y. Hamaji et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 371-373
doi.org/10.13182/FST13-A16958
Articles are hosted by Taylor and Francis Online.
The structure of deposited carbon layers formed under various conditions ranging from small scale laboratory to large scale magnetic confinement devices was characterized using Raman spectroscopy. By comparing ion beam and TEXTOR experiments, the deposition temperature is found to be the dominant factor in three dimensional disorder of sp2 sites and sp3 ratio at T>493 K. While, no clear temperature dependence on properties of aromatic rings was observed, indicating other parameters responsible for the aromatic rings present in carbon deposition layers. The carbon layers from JET differed significantly, indicating influence of Be compound formation on Raman parameters.