ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
H. Zhou, Y. Hirooka, N. Ashikawa, T. Muroga, A. Sagara
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 361-363
doi.org/10.13182/FST13-A16955
Articles are hosted by Taylor and Francis Online.
Hydrogen plasma-driven permeation (PDP) experiments have been conducted, using a steady state linear plasma device for the membranes made of reduced activation ferritic steel (F82H) and stainless steel (SUS304). The steady state PDP ratios have been measured to be of the orders of 10-3 and 10-4 at ~220 °C for 1 mm thick F82H and SUS304 membranes, respectively. For F82H, the steady state PDP flux ratio has been found to be inversely proportional to membrane thickness at ~220 °C, indicating that permeation is diffusion-limited. From the temperature dependent PDP data for F82H an activation energy has been evaluated to be ~0.5 eV.