ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
ANS webinar to focus on low-dose radiation risk
Join ANS on Thursday, January 21, at noon (ET) for a Q&A with an expert panel as they discuss how to communicate about the risk of low-dose radiation. “Talking About Low-dose Radiation Risk” is a free members-only event that serves as a follow-up to the “Risky Business” President’s Session that took place during the ANS Virtual Winter Meeting last November. The session will take a deeper dive into the many questions generated from the thought-provoking discussion.
Register now to attend the webinar.
S. V. Chernitskiy, V. E. Moiseenko, K. Noack, O. Ågren
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 322-324
dx.doi.org/10.13182/FST13-A16942
Articles are hosted by Taylor and Francis Online.
The MCNPX numerical code has been used to model the neutron transport in a mirror based fusion-fission reactor. The purpose is to find a principal design of the fission mantle which fits to the neutron source and to calculate the leakage of neutrons through the mantle surface of the fission reactor.The fission reactor part has a cylindrical shape with an outer radius 1.66 m and a 4 m length. The fuel has the isotopic composition of the spent nuclear fuel from PWR after uranium-238 removal. Inside the fission reactor core is a vacuum chamber with a radius 0.5 m containing a 4 m long hot plasma producing fusion neutrons. To sustain the hot ion plasma which is responsible for the fusion neutron production, neutral beam injection is considered.Calculation results for the radial leakage of neutrons through the mantle surface of the fission reactor are presented. These calculations predict that the power released with neutrons from the reactor to outer space would be small and will not exceed the value of 6 kW while the reactor thermal power is 1 GWth.