ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
ANS webinar to focus on low-dose radiation risk
Join ANS on Thursday, January 21, at noon (ET) for a Q&A with an expert panel as they discuss how to communicate about the risk of low-dose radiation. “Talking About Low-dose Radiation Risk” is a free members-only event that serves as a follow-up to the “Risky Business” President’s Session that took place during the ANS Virtual Winter Meeting last November. The session will take a deeper dive into the many questions generated from the thought-provoking discussion.
Register now to attend the webinar.
M. Reinhart et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 201-204
dx.doi.org/10.13182/FST13-A16905
Articles are hosted by Taylor and Francis Online.
In this work we investigate the applicability of several optical emission spectroscopy methods to measure the electron density and temperature in deuterium plasma in the linear plasma generator PSI-2. The spectroscopy measurements are realized by an imaging spectrometer which delivers radial profiles of the emission lines. With the application of an inverse Abel transformation, spatially resolved measurements are obtained.The spectroscopy methods divide into two groups: The measurement of ne by Balmer line ratios and by the rotational temperature of molecules is only suitable for ionizing plasmas; the measurement of ne by the Stark broadening of Paschen lines and of Te by Paschen line ratios is only applicable for recombining plasmas.For the evaluation of these methods, different plasma conditions are produced in PSI-2. The plasma generator is capable of producing deuterium plasmas with electron densities of up to 1013 cm-3 and electron temperatures of up to 20 eV. Additional measurements with a Langmuir double probe are conducted for comparison with the spectroscopy measurements.A collisional-radiative model in the Yacora code is used to compare measured Balmer line emissions with the calculation and to investigate which reaction channels influence the recombination in PSI-2.