ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
M. Reinhart et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 201-204
doi.org/10.13182/FST13-A16905
Articles are hosted by Taylor and Francis Online.
In this work we investigate the applicability of several optical emission spectroscopy methods to measure the electron density and temperature in deuterium plasma in the linear plasma generator PSI-2. The spectroscopy measurements are realized by an imaging spectrometer which delivers radial profiles of the emission lines. With the application of an inverse Abel transformation, spatially resolved measurements are obtained.The spectroscopy methods divide into two groups: The measurement of ne by Balmer line ratios and by the rotational temperature of molecules is only suitable for ionizing plasmas; the measurement of ne by the Stark broadening of Paschen lines and of Te by Paschen line ratios is only applicable for recombining plasmas.For the evaluation of these methods, different plasma conditions are produced in PSI-2. The plasma generator is capable of producing deuterium plasmas with electron densities of up to 1013 cm-3 and electron temperatures of up to 20 eV. Additional measurements with a Langmuir double probe are conducted for comparison with the spectroscopy measurements.A collisional-radiative model in the Yacora code is used to compare measured Balmer line emissions with the calculation and to investigate which reaction channels influence the recombination in PSI-2.