ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
K. Takahashi et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 156-159
doi.org/10.13182/FST13-A16894
Articles are hosted by Taylor and Francis Online.
Nuclear analysis of the ITER equatorial EC launcher consisting of an unique blanket shield structure and a port plug installing millimeter (mm) wave components, neutron shields, cooling water lines, etc. has been carried out. The analysis results are used to determine heat and/or particle loads on its components and to evaluate the possibility of “hands-on maintainability” (personnel accessibility) to the launcher back-end. A significant radiation leak at the gaps between the port walls and port plug frame of the launcher was revealed. Another significant neutron leakage is through the port wall consisting of only stainless steel but without light isotopes such as water. The shut down dose rates was estimated at the port interspace behind the launcher at the same level of the required value of 100 Sv/h. This analysis offers the potential to modify the launchers shielding layout to minimize the above leakage and further reduce the shut down dose rates in the regions of personnel access.