ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC dockets construction permit for Dow, X-energy SMR
The Nuclear Regulatory Commission has accepted Dow’s construction permit application to build an X-energy small modular reactor in Seadrift, Texas.
Kiyoyuki Yambe, Michiaki Inomoto, Shigefumi Okada
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 147-151
doi.org/10.13182/FST13-A16892
Articles are hosted by Taylor and Francis Online.
We have measured detailed axial profiles of electron density, floating potential, and axial magnetic field in the field-reversed configuration (FRC) sustained by the rotating magnetic field. To study the influence on the equilibrium of two kinds of bias magnetic field configuration - straight (pure solenoidal) and mirror -, experiments have been carried out in the FRC Injection Experiment apparatus. The case of mirror configuration has longer quasi-steady state compared with the case of straight configuration. The steeper density gradient outside the separatrix is generated by the uniform gradient of magnetic field due to the mirror configuration. The axial parallel diffusion is suppressed due to the steeper density gradient outside the separatrix. Therefore, the mirror bias magnetic field configuration works to improve the plasma confinement.