ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Kazunori Takahashi
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 123-126
doi.org/10.13182/FST13-A16886
Articles are hosted by Taylor and Francis Online.
A thrust imparted by a permanent-magnets helicon plasma thruster is directly measured by using a pendulum thrust balance. The source consists of a 6.5-cm-inner diameter glass tube and a magnetic nozzle provided by arrays of permanent magnets. The configuration is designed so as to have maximum field strength of about 100 Gauss near the open end of the source. The flow rate of argon propellant is chosen as 25 sccm and a plasma is produced by 13.56 MHz helicon and/or inductively coupled discharges. The main plasma is guided by the magnetic nozzle and flows out from the source. It is observed that the whole structure of the source attached to the pendulum balance moves only during the plasma production, and its displacement is measured by a laser displacement sensor. The obtained maximum thrust is presently 7.5 mN for 2 kW rf power.