ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
G. I. Dimov, A. V. Ivanov
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 111-114
doi.org/10.13182/FST13-A16883
Articles are hosted by Taylor and Francis Online.
For neutralization of the H- beams with an energy of 1 MeV, it is reasonable to use plasma targets with the yield of atoms much higher than that in gas targets. The target plasma is proposed to be confined in a magnetic trap with weak longitudinal magnetic field, the inverse plugs and circular multipole walls. Because of conservation of canonical angular momentum in the axially-symmetric system, the longitudinal confinement of particles by inverse plugs is rather hard. Transversal confinement of plasma is rather good. The target plasma is proposed to be generated by the 100-200 eV electrons.A possibility to develop the experimental plasma target with a 10 cm aperture is considered for neutralization of the H- ion beam with a current up to 2 A. A magnetic field is planned to be formed by circular NdFeB magnets and iron screens. Results are given of the computer simulations for the magnetic system and its optimization for the plasma confinement and especially for restriction of its escape through the end wall holes. Numerically calculated trajectories of the ensemble of plasma electrons with various initial coordinates and trajectories of beam ions are given.