ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
G. I. Dimov, A. V. Ivanov
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 111-114
doi.org/10.13182/FST13-A16883
Articles are hosted by Taylor and Francis Online.
For neutralization of the H- beams with an energy of 1 MeV, it is reasonable to use plasma targets with the yield of atoms much higher than that in gas targets. The target plasma is proposed to be confined in a magnetic trap with weak longitudinal magnetic field, the inverse plugs and circular multipole walls. Because of conservation of canonical angular momentum in the axially-symmetric system, the longitudinal confinement of particles by inverse plugs is rather hard. Transversal confinement of plasma is rather good. The target plasma is proposed to be generated by the 100-200 eV electrons.A possibility to develop the experimental plasma target with a 10 cm aperture is considered for neutralization of the H- ion beam with a current up to 2 A. A magnetic field is planned to be formed by circular NdFeB magnets and iron screens. Results are given of the computer simulations for the magnetic system and its optimization for the plasma confinement and especially for restriction of its escape through the end wall holes. Numerically calculated trajectories of the ensemble of plasma electrons with various initial coordinates and trajectories of beam ions are given.