ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
T. Takizuka, N. Oyama, T. Fukuda
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 64-69
doi.org/10.13182/FST13-A16875
Articles are hosted by Taylor and Francis Online.
Edge localized mode (ELM) must be eliminated which enhances the erosion of divertor plates in the Hmode operation of tokamak reactors. Suppression of ELM has been experimentally achieved by the resonant magnetic perturbation (RMP) with multipartite coils. In a DEMO reactor with strong neutron flux, however, it is desired the coils near the first wall not to be put in. We propose an innovative concept of the RMP for tokamak DEMO reactors without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed magnetic field is naturally formed in the axisymmetric toroidal magnetic field through the helical ferritic steel inserts (FSIs). The perturbation amplitude in the plasma pedestal region can easily be set above several 10-4 of the toroidal field strength in the DEMO reactor condition, which is enough for the RMP to mitigate/suppress ELMs.