ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
P. A. Bagryansky et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 40-45
doi.org/10.13182/FST13-A16871
Articles are hosted by Taylor and Francis Online.
Physics and engineering aspects of a system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are presented. This system based on two 450 kW/54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250-350 eV for improved energy confinement of hot ions. The basic physical issue of the GDT magnetic field topology is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions, oblique launch of gyrotron radiation results in generation of right-hand-polarized (R) electromagnetic waves propagating with high N|| in the vicinity of the cyclotron resonance layer, which leads to effective single-pass absorption of the injected microwave power. In the present paper, we investigate numerically an optimized ECRH scenario based on the proposed mechanism of wave propagation and discuss the design of the ECRH system, which is currently under construction at the Budker Institute.