ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
B. C. Stratton, M. Bitter, K. W. Hill, D. L. Hillis, J. T. Hogan
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 431-486
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1677
Articles are hosted by Taylor and Francis Online.
Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. Spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed passive spectroscopic diagnostics to distinguish them from active spectroscopic diagnostics involving injected particle and laser beams, are reviewed. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.