ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
A. J. H. Donné, C. J. Barth, H. Weisen
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 397-430
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1676
Articles are hosted by Taylor and Francis Online.
Laser-aided diagnostics are widely applied in the field of high-temperature plasma diagnostics for a large variety of measurements. Incoherent Thomson scattering is used for highly localized measurements of the electron temperature and density in the plasma. Coherent Thomson scattering yields information on the fast ion population in the plasma and/or depending on the geometry and wavelength chosen electron density fluctuations. Interferometry and polarimetry are often combined in a single diagnostics setup to measure the electron density and the component of the magnetic field parallel to the laser chord. Density fluctuations can be measured by means of phase contrast imaging, scattering, and various other laser-aided techniques. This paper is primarily focused on laser diagnostics utilized in the mainstream magnetic confinement research (tokamaks and stellarators with some examples from other devices if applicable). In the paper a brief tutorial introduction in each of the techniques is given, followed by a description of some typical implementations on magnetic confinement devices and some examples of recent experimental results. For each of the techniques the potential application to the ITER tokamak is also discussed. The paper is not meant as a comprehensive and exhaustive review giving a proper tribute to all the work that has been done in this field over the years.