ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. J. H. Donné, C. J. Barth, H. Weisen
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 397-430
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1676
Articles are hosted by Taylor and Francis Online.
Laser-aided diagnostics are widely applied in the field of high-temperature plasma diagnostics for a large variety of measurements. Incoherent Thomson scattering is used for highly localized measurements of the electron temperature and density in the plasma. Coherent Thomson scattering yields information on the fast ion population in the plasma and/or depending on the geometry and wavelength chosen electron density fluctuations. Interferometry and polarimetry are often combined in a single diagnostics setup to measure the electron density and the component of the magnetic field parallel to the laser chord. Density fluctuations can be measured by means of phase contrast imaging, scattering, and various other laser-aided techniques. This paper is primarily focused on laser diagnostics utilized in the mainstream magnetic confinement research (tokamaks and stellarators with some examples from other devices if applicable). In the paper a brief tutorial introduction in each of the techniques is given, followed by a description of some typical implementations on magnetic confinement devices and some examples of recent experimental results. For each of the techniques the potential application to the ITER tokamak is also discussed. The paper is not meant as a comprehensive and exhaustive review giving a proper tribute to all the work that has been done in this field over the years.