ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
N. C. Luhmann, Jr., H. Bindslev, H. Park, J. Sánchez, G. Taylor, C. X. Yu
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 335-396
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1675
Articles are hosted by Taylor and Francis Online.
Microwave-based diagnostics have found broad application in magnetic fusion plasma diagnostics and are expected to be widely employed in future burning plasma experiments (BPXs). Most of these techniques are based directly on the dispersive properties of the plasma medium that, as shown in the body of the paper, results in the microwave/millimeter wave portion of the electromagnetic spectrum being particularly well suited for a variety of measurements of both magnetic fusion plasma equilibrium parameters and their fluctuations. Electron cyclotron emission provides a measurement of electron temperature and its fluctuations while electron cyclotron absorption potentially can provide a measurement of electron pressure (the product of electron density and temperature) as well as information on the suprathermal electron distribution. Electron Bernstein wave emission is also employed for electron temperature radiometric measurements in devices including reversed field pinches, spherical tori, and higher-aspect-ratio tokamaks and stellarators that operate at high . The radar-based microwave reflectometry technique measures the electron density profile and its fluctuations by means of the reflection of electromagnetic waves at the plasma cutoff layer. Coherent Thomson scattering in the microwave region yields information on the fast ion population. Wave number resolved microwave collective scattering is also widely employed for measuring nonthermal (turbulent) density fluctuations or coherent electrostatic waves. The approach taken in this review is to address each technique separately beginning with the physical principles followed by representative implementations on magnetic fusion devices. In each case, the applicability to future BPXs is discussed. It is impossible in a short review to capture fully the numerous significant accomplishments of the many clever scientists and engineers who have advanced microwave plasma diagnostics technology over many decades. Therefore, in this paper, we can reveal only the basic principles together with some of the most exciting highlights while outlining the major trends, and we hope it will serve as an exciting introduction to this rich field of plasma diagnostics.