ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
A. Fernández, A. Cappa, F. Castejón, J. M. Fontdecaba, K. Nagasaki
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 254-260
Technical Note | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1670
Articles are hosted by Taylor and Francis Online.
Electron cyclotron current drive (ECCD) experiments carried out in the TJ-II stellarator are presented. In all the analyzed plasma discharges, the second-harmonic electron cyclotron resonance heating (ECRH) power is launched on-axis from two low-field-side stellarator symmetric positions. To investigate the ECCD properties of the device, the dependence of the total toroidal plasma current on the launching direction of both ECRH beams at fixed density conditions, and on the line average density for some fixed launching configurations, has been determined. In the launching direction scan, only discharges with similar density and temperature profiles have been studied, in order to avoid strong modifications of the bootstrap current contribution and the refraction properties of the plasma. Moreover, the measurements of the toroidal plasma current and the plasma profiles are taken at the end of the discharge, when approximately steady-state conditions are achieved. Using the normalized current drive efficiency as defined by ECCD [identical] <ne> IECCDR/PECRH, we have obtained values up to ECCD [approximately equal to] 0.001 × 1020 A W-1 m-2.