ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. A. Henderson, C. P. Moeller
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 220-236
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1667
Articles are hosted by Taylor and Francis Online.
The remote steering (RS) system (C. P. Moeller, Proc. 23rd Int. Conf. Infrared and Millimeter Waves, September 7-11, 1998, University of Essex, pp. 116-118) provides a method of steering a millimeter-wave beam for electron cyclotron heating (ECH) and current drive (CD) applications without having moveable mirrors close to the plasma. The input beam is coupled into a square corrugated waveguide having a length such that the phase and amplitude profile of the input beam is repeated at the waveguide output. In the most basic implementation, by injecting the input beam at an angle relative to the waveguide axis, the output beam is radiated at that same angle. The steering range (typically to ±12 deg) and the focusing ability are strongly limited because of the restricted space for the launcher in a fusion device, which results in a large deposition profile in the plasma. However, the waveguide and optical arrangement can be modified to either increase the steering range and/or focus the RS system. For example, if a converging beam is injected into the waveguide, the output beam's waist will be projected far from the waveguide aperture. Likewise, a tapered square waveguide can be used to increase the scanning range of the RS system beyond that of ±12 deg. This paper will investigate such hybrid designs of the RS launcher, providing alternative configurations for optimizing the launching configuration, depending on the requirements of a given ECH and CD system.