ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
T. P. Goodman, V. S. Udintsev, I. Klimanov, A. Mueck, O. Sauter, C. Schlatter
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 196-207
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1665
Articles are hosted by Taylor and Francis Online.
Electron cyclotron (EC) emission (ECE) radiometers viewing perpendicular to the magnetic field are common on nearly all tokamaks for measuring the electron temperature with good spatio-temporal resolution. Two such radiometers are installed on TCV, one looking from the low field side (LFS) and the other from the high field side (HFS). The HFS radiometer is especially sensitive to non-Maxwellian emission in the presence of the strong EC current drive (ECCD) provided by the 3-MW second-harmonic (X2) EC system as the nonthermal radiation is not reabsorbed by the bulk when passing to the receiver. Simultaneous HFS and LFS measurements allow higher-order modeling of the electron distribution function as more constraints are provided by the dual measurements; however, the asymmetric nature of the electron distribution function required for ECCD to occur is not directly put in evidence by these lines of sight. Oblique ECE measurements of an asymmetric nonthermal electron distribution, on the other hand, are expected to also be asymmetric and can provide important information on the current-carrying features of the nonthermal population. A dedicated receiving antenna has been installed allowing real-time swept oblique ECE on TCV in both the co- and counter-looking directions. Proof-of-principle experiments are described in which Doppler-shifted emission is measured.