ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
A. Bruschi, S. Cirant, A. Moro, A. Simonetto
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 97-103
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1657
Articles are hosted by Taylor and Francis Online.
A hybrid quasi-optical waveguide resonating device providing millimeter-wave beam switching and combination at high power is described in this paper. It can be realized, starting from the beam-splitting properties of the rectangular corrugated waveguide with aperture much greater than the wavelength , by arranging the waveguides in a resonating ring configuration. This kind of waveguide, cut at an appropriate length, has been proposed for the remote steering (RS) system of the ITER upper electron cyclotron resonance heating (ECRH) launcher, because of its imaging properties. In fact, beam steering can be performed far from the plasma edge since an input beam is transformed into an output beam with the same angle with the waveguide axis as the input one. Multiple imaging properties, derived by the fractional Talbot effect, are applied at waveguide sections cut at fractional lengths and lead to 3-dB beam-splitting properties for a length equivalent to half the length of an RS waveguide. Ring-type resonant devices with two outputs are obtained by setting two or more waveguides in properly arranged loops. The power distribution in the two output channels available can be controlled either mechanically, moving the mirrors used to couple the different sections by fractions of the wavelength , or varying the source frequency by a fraction / << 1. The exploitation of a second input port allows beams of different gyrotrons with nearly the same frequency to be coupled to the same transmission line. This relatively compact device can be evaluated for application into the ITER ECRH transmission line, with advantages on beam routing control.