ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
A. Bruschi, S. Cirant, A. Moro, A. Simonetto
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 97-103
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1657
Articles are hosted by Taylor and Francis Online.
A hybrid quasi-optical waveguide resonating device providing millimeter-wave beam switching and combination at high power is described in this paper. It can be realized, starting from the beam-splitting properties of the rectangular corrugated waveguide with aperture much greater than the wavelength , by arranging the waveguides in a resonating ring configuration. This kind of waveguide, cut at an appropriate length, has been proposed for the remote steering (RS) system of the ITER upper electron cyclotron resonance heating (ECRH) launcher, because of its imaging properties. In fact, beam steering can be performed far from the plasma edge since an input beam is transformed into an output beam with the same angle with the waveguide axis as the input one. Multiple imaging properties, derived by the fractional Talbot effect, are applied at waveguide sections cut at fractional lengths and lead to 3-dB beam-splitting properties for a length equivalent to half the length of an RS waveguide. Ring-type resonant devices with two outputs are obtained by setting two or more waveguides in properly arranged loops. The power distribution in the two output channels available can be controlled either mechanically, moving the mirrors used to couple the different sections by fractions of the wavelength , or varying the source frequency by a fraction / << 1. The exploitation of a second input port allows beams of different gyrotrons with nearly the same frequency to be coupled to the same transmission line. This relatively compact device can be evaluated for application into the ITER ECRH transmission line, with advantages on beam routing control.