ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
P. Platania, C. Sozzi
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 77-87
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | dx.doi.org/10.13182/FST08-A1655
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) and electron cyclotron current drive systems in fusion-grade devices meet the severe requirements (in terms of high power handling capability, extended steering range, and room availability) that guide the design of complex multiple-mirror quasi-optical launchers. A valuable step in this process is a beam-pattern calculation in vacuum including relevant electromagnetic effects not easily included in analytical evaluations. In fact, the analytical approach is a means to study the design layout at a first order and is able to derive the relevant quantities as a function of the steering angle and of the beam path in a form suitable to interface with most of the currently available beam-tracing codes. On the other hand, electromagnetic calculations using physical optics tools provide a complete description of the resulting full beam pattern, including the effects of aberration, beam truncation, thermal deformation of the mirrors, and the surrounding structures. Moreover, numerical calculation with reliable and benchmarked codes is a very efficient way to test subsequent updates of a given launcher model, once the basic geometry has been implemented. In this paper, we discuss in particular the application of the GRASP® code to the case of the remote steering option for the ITER ECRH upper launcher.