ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
P. Platania, C. Sozzi
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 77-87
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1655
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) and electron cyclotron current drive systems in fusion-grade devices meet the severe requirements (in terms of high power handling capability, extended steering range, and room availability) that guide the design of complex multiple-mirror quasi-optical launchers. A valuable step in this process is a beam-pattern calculation in vacuum including relevant electromagnetic effects not easily included in analytical evaluations. In fact, the analytical approach is a means to study the design layout at a first order and is able to derive the relevant quantities as a function of the steering angle and of the beam path in a form suitable to interface with most of the currently available beam-tracing codes. On the other hand, electromagnetic calculations using physical optics tools provide a complete description of the resulting full beam pattern, including the effects of aberration, beam truncation, thermal deformation of the mirrors, and the surrounding structures. Moreover, numerical calculation with reliable and benchmarked codes is a very efficient way to test subsequent updates of a given launcher model, once the basic geometry has been implemented. In this paper, we discuss in particular the application of the GRASP® code to the case of the remote steering option for the ITER ECRH upper launcher.