ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
P. Platania, C. Sozzi
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 77-87
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1655
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) and electron cyclotron current drive systems in fusion-grade devices meet the severe requirements (in terms of high power handling capability, extended steering range, and room availability) that guide the design of complex multiple-mirror quasi-optical launchers. A valuable step in this process is a beam-pattern calculation in vacuum including relevant electromagnetic effects not easily included in analytical evaluations. In fact, the analytical approach is a means to study the design layout at a first order and is able to derive the relevant quantities as a function of the steering angle and of the beam path in a form suitable to interface with most of the currently available beam-tracing codes. On the other hand, electromagnetic calculations using physical optics tools provide a complete description of the resulting full beam pattern, including the effects of aberration, beam truncation, thermal deformation of the mirrors, and the surrounding structures. Moreover, numerical calculation with reliable and benchmarked codes is a very efficient way to test subsequent updates of a given launcher model, once the basic geometry has been implemented. In this paper, we discuss in particular the application of the GRASP® code to the case of the remote steering option for the ITER ECRH upper launcher.