ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. Tsakadze, H. Bindslev, S. B. Korsholm, A. W. Larsen, F. Meo, P. K. Michelsen, S. Michelsen, A. H. Nielsen, S. Nimb, B. Lauritzen, E. Nonbol, N. Dubois
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 69-76
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1654
Articles are hosted by Taylor and Francis Online.
The proposed fast ion collective Thomson scattering (CTS) diagnostic system for ITER provides the unique capability of measuring the temporally and spatially resolved velocity distribution of the confined fast ions and fusion alpha particles in a burning ITER plasma. The present paper describes the status of the iteration toward the detailed design of the ITER fast ion CTS diagnostic and explains in detail a number of essential considerations and challenges.The diagnostic consists of two separate receiving systems. One system measures the fast ion velocity component in the direction near perpendicular, and the other measures the component near parallel to the magnetic field. Each system has a high-power probe beam at an operating frequency of 60 GHz and a receiver unit. In order to prevent neutron damage to moveable parts, the geometry of the probes and receivers is fixed. An array of receivers in each receiving unit ensures simultaneous measurements in multiple scattering volumes. The latter receiving system (resolving the parallel component) is located on the high field side (HFS) of the plasma, and this constitutes a significant challenge. This HFS receiving unit has been central in the studies, and new HFS receiver mock-up measurements are presented as well as neutron flux calculations of the influence of the increased slot height.