ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Kai Masuda, Kiyoshi Yoshikawa
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1119-1123
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1648
Articles are hosted by Taylor and Francis Online.
A two-dimensional numerical code has been developed for simulating dc discharges in inertial electrostatic confinement (IEC) fusion devices. Unlike the existing IEC codes, the developed code is not based on Monte Carlo scheme by the use of random number nor time-domain particle-in-cell (PIC) method, aiming at a drastic reduction of computational efforts. It is based on a time-independent scheme, i.e. iterative calculations of particle-tracking and induced self-field, leading to a much faster convergence than the time-domain PIC scheme on steady-state self-consistent solutions. Also, a new scheme for atomic process treatment is proposed, which is completely free from the inherent difficulty of Monte Carlo method, i.e. requiring many particles for simulating rare events. Preliminary numerical result from the this code showed agreement with experimental helium discharge characteristics in an IEC device.