ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Kai Masuda, Kiyoshi Yoshikawa
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1119-1123
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1648
Articles are hosted by Taylor and Francis Online.
A two-dimensional numerical code has been developed for simulating dc discharges in inertial electrostatic confinement (IEC) fusion devices. Unlike the existing IEC codes, the developed code is not based on Monte Carlo scheme by the use of random number nor time-domain particle-in-cell (PIC) method, aiming at a drastic reduction of computational efforts. It is based on a time-independent scheme, i.e. iterative calculations of particle-tracking and induced self-field, leading to a much faster convergence than the time-domain PIC scheme on steady-state self-consistent solutions. Also, a new scheme for atomic process treatment is proposed, which is completely free from the inherent difficulty of Monte Carlo method, i.e. requiring many particles for simulating rare events. Preliminary numerical result from the this code showed agreement with experimental helium discharge characteristics in an IEC device.