ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Brian J. Egle, John F. Santarius, Gerald L. Kulcinski
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1110-1113
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1646
Articles are hosted by Taylor and Francis Online.
The performance of a new Inertial Electrostatic Confinement (IEC) fusion device using a cylindrical anode and two different cathode geometries, spherical and cylindrical, was compared to an existing IEC device with two different sized configurations of spherical anodes and cathodes. Experimental data was generated at -30 to -150 kilovolts, 30 milliamps steady-state, and 0.3 Pascal of Deuterium (D) and/or Helium-3 (3He). The best neutron rate achieved by the new device in a D environment was 2.7 × 107 neutrons per second at 145 kV and 35 mA. In a D-3He environment, the best proton rate achieved was 2.0 × 107 protons per second at 130 kV and 30 mA. Both the D-D neutron rate and the D-3He proton rate were approximately 40% lower than the larger volume existing IEC device.