ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
Brian J. Egle, John F. Santarius, Gerald L. Kulcinski
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1110-1113
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1646
Articles are hosted by Taylor and Francis Online.
The performance of a new Inertial Electrostatic Confinement (IEC) fusion device using a cylindrical anode and two different cathode geometries, spherical and cylindrical, was compared to an existing IEC device with two different sized configurations of spherical anodes and cathodes. Experimental data was generated at -30 to -150 kilovolts, 30 milliamps steady-state, and 0.3 Pascal of Deuterium (D) and/or Helium-3 (3He). The best neutron rate achieved by the new device in a D environment was 2.7 × 107 neutrons per second at 145 kV and 35 mA. In a D-3He environment, the best proton rate achieved was 2.0 × 107 protons per second at 130 kV and 30 mA. Both the D-D neutron rate and the D-3He proton rate were approximately 40% lower than the larger volume existing IEC device.