ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Brian J. Egle, John F. Santarius, Gerald L. Kulcinski
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1110-1113
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1646
Articles are hosted by Taylor and Francis Online.
The performance of a new Inertial Electrostatic Confinement (IEC) fusion device using a cylindrical anode and two different cathode geometries, spherical and cylindrical, was compared to an existing IEC device with two different sized configurations of spherical anodes and cathodes. Experimental data was generated at -30 to -150 kilovolts, 30 milliamps steady-state, and 0.3 Pascal of Deuterium (D) and/or Helium-3 (3He). The best neutron rate achieved by the new device in a D environment was 2.7 × 107 neutrons per second at 145 kV and 35 mA. In a D-3He environment, the best proton rate achieved was 2.0 × 107 protons per second at 130 kV and 30 mA. Both the D-D neutron rate and the D-3He proton rate were approximately 40% lower than the larger volume existing IEC device.