ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Grzegorz Karwasz, Kamil Fedus
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 338-348
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16440
Articles are hosted by Taylor and Francis Online.
Operation of thermonuclear reactors will require knowledge of numerous cross sections for electron interaction with atoms and molecules, largely unknown at present and difficult for experiments. Theory is needed, but first it has to be verified on laboratory-accessible targets. A few working hypotheses and systematic approaches for various electron scattering processes are recommended. We discuss briefly analogies between total cross sections for scattering on nonpolar (BF3, CO2), polar (H2O, NH3, PF3), reactive (BCl3, HCl), and hexafluoride (SF6, WF6) molecules. For partial cross sections (ionization, elastic, electronic excitation), we search for some partitioning schemes. Similarly, we treat the vibrational excitation at shape resonances in linear triatomic molecules (N2O, CO2, OCS). Electron attachment for targets such as CCl4 or CF3I rises quickly toward the zero-energy limit; semiempirical approaches fail, but new theories work well. The paper, in general, shows ways to multitask construction of cross sections rarely measured in laboratories.