ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. F. Radel, G. L. Kulcinski, R. P. Ashley, J. F. Santarius, G. A. Emmert, G. R. Piefer, J. H. Sorebo, D. R. Boris, B. Egle, S. J. Zenobia, E. Alderson, D. C. Donovan
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1087-1091
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST52-1087
Articles are hosted by Taylor and Francis Online.
This paper overviews the work that has been done to date towards the development of a compact, reliable means to detect Highly Enriched Uranium (HEU) and other fissile materials utilizing a pulsed Inertial Electrostatic Confinement (IEC) D-D fusion device. To date, the UW IEC device has achieved 115 kV pulses in excess of 2 ampere, with pulsed neutron rates of 1.8 × 109 n/s during a 0.5 ms pulse at 10 Hz. MCNP modeling indicates that detection of samples of U-235 as small as 10 grams is achievable at current neutron production rates, and initial pulsed and steady-state HEU detection experiments have verified these results.