ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
R. F. Radel, G. L. Kulcinski, R. P. Ashley, J. F. Santarius, G. A. Emmert, G. R. Piefer, J. H. Sorebo, D. R. Boris, B. Egle, S. J. Zenobia, E. Alderson, D. C. Donovan
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1087-1091
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST52-1087
Articles are hosted by Taylor and Francis Online.
This paper overviews the work that has been done to date towards the development of a compact, reliable means to detect Highly Enriched Uranium (HEU) and other fissile materials utilizing a pulsed Inertial Electrostatic Confinement (IEC) D-D fusion device. To date, the UW IEC device has achieved 115 kV pulses in excess of 2 ampere, with pulsed neutron rates of 1.8 × 109 n/s during a 0.5 ms pulse at 10 Hz. MCNP modeling indicates that detection of samples of U-235 as small as 10 grams is achievable at current neutron production rates, and initial pulsed and steady-state HEU detection experiments have verified these results.