ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Christopher E. Hamilton, Nickolaus A. Smith, Jon R. Schoonover, Kimberly A. Defriend Obrey, Nicholas Bazin, Tina Jewell
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 301-304
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16354
Articles are hosted by Taylor and Francis Online.
Silica aerogel, an extremely low-density and high-surface-area material, is a vital component of many target designs for inertial confinement fusion and high-energy-density physics experiments. Silica aerogel utilized in targets is found in a variety of densities and configurations. Material properties must be well characterized to minimize uncertainties in experimental data. In particular, density must be accurately known to predict shock velocity and timing of diagnostics. One potentially problematic attribute of silica is its hygroscopic nature. Here we describe adsorption of ambient moisture by silica aerogel, based on its density and processing parameters. Quick and simple methods of characterizing water uptake are needed to provide confidence in aerogel components. We find that aerogel manufactured using supercritical methanol is much more stable toward moisture (and therefore more suitable for use in targets) than that produced using supercritical carbon dioxide. Aerogel materials were characterized by thermogravimetric analysis and Fourier transform infrared spectroscopy.