ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Christopher E. Hamilton, Nickolaus A. Smith, Jon R. Schoonover, Kimberly A. Defriend Obrey, Nicholas Bazin, Tina Jewell
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 301-304
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16354
Articles are hosted by Taylor and Francis Online.
Silica aerogel, an extremely low-density and high-surface-area material, is a vital component of many target designs for inertial confinement fusion and high-energy-density physics experiments. Silica aerogel utilized in targets is found in a variety of densities and configurations. Material properties must be well characterized to minimize uncertainties in experimental data. In particular, density must be accurately known to predict shock velocity and timing of diagnostics. One potentially problematic attribute of silica is its hygroscopic nature. Here we describe adsorption of ambient moisture by silica aerogel, based on its density and processing parameters. Quick and simple methods of characterizing water uptake are needed to provide confidence in aerogel components. We find that aerogel manufactured using supercritical methanol is much more stable toward moisture (and therefore more suitable for use in targets) than that produced using supercritical carbon dioxide. Aerogel materials were characterized by thermogravimetric analysis and Fourier transform infrared spectroscopy.