ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Christopher E. Hamilton, Nickolaus A. Smith, Jon R. Schoonover, Kimberly A. Defriend Obrey, Nicholas Bazin, Tina Jewell
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 301-304
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16354
Articles are hosted by Taylor and Francis Online.
Silica aerogel, an extremely low-density and high-surface-area material, is a vital component of many target designs for inertial confinement fusion and high-energy-density physics experiments. Silica aerogel utilized in targets is found in a variety of densities and configurations. Material properties must be well characterized to minimize uncertainties in experimental data. In particular, density must be accurately known to predict shock velocity and timing of diagnostics. One potentially problematic attribute of silica is its hygroscopic nature. Here we describe adsorption of ambient moisture by silica aerogel, based on its density and processing parameters. Quick and simple methods of characterizing water uptake are needed to provide confidence in aerogel components. We find that aerogel manufactured using supercritical methanol is much more stable toward moisture (and therefore more suitable for use in targets) than that produced using supercritical carbon dioxide. Aerogel materials were characterized by thermogravimetric analysis and Fourier transform infrared spectroscopy.