ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
P. B. Mirkarimi, K. A. Bettencourt, N. E. Teslich, S. C. Peterson
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 282-287
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-34
Articles are hosted by Taylor and Francis Online.
The equation of state (EOS) and other parameters at high pressures and low temperatures are of significant interest. One example is iron, where knowledge of the EOS at high pressure is needed to understand planetary interiors and planetary development. Targets are needed to perform these important measurements on experimental platforms such as Omega, National Ignition Facility (NIF), and the Z-machine. There is a need for thicker films for targets for the NIF and Z-machine platforms, which is technically challenging because of coating stress and other issues. We present results showing that we successfully sputter deposited stepped iron and tantalum films up to 90+ m thick for targets on NIF and have sputter deposited (unstepped) tantalum films over 1700 m (1.7 mm!) thick, which are desired for targets for Z-machine EOS experiments. This is generally made possible by the low stress achieved in the tantalum films (as low as 25 MPa). We will also report some process improvement achievements, such as a shaper roll-off for the Fe step edges, as well as some characterization results of the microstructure of the very thick films. For example, interruption of the growth with a brief ambient exposure appears to have a minor impact on the columnar grain growth.