ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Motonori Komura, Kaori Kamata, Tomokazu Iyoda, Keiji Nagai
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 257-264
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16347
Articles are hosted by Taylor and Francis Online.
Highly ordered nanopore arrays were successfully fabricated using poly(ethylene oxide) (PEO) and polymethacrylate with azobenzene mesogen in side chains [PMA(Az)] block copolymer film based on irradiation of 172-nm vacuum ultraviolet (VUV) light. The block copolymer forms a highly ordered microphase-separated film with perpendicularly oriented PEO cylinders just by thermal annealing through a self-assembling process. We found that the etching rate of the PEO homopolymer was much higher than that of the PMA(Az) homopolymer at a chamber pressure of 102 Pa of atmosphere under VUV irradiation. The etching rate of the PEO component in the two systems of microphase separation and macrophase separation of the homopolymer blend crucially depended on the feature size of phase separation. In the PEO selective etching process of the block copolymer film, the water-contact angle of the film dramatically increased due to elimination of hydrophilic PEO. The resulting nanopore array film will be useful for low-density target materials.