ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
J. F. Hund, J. W. Crippen, K. Clark, N. Martinez, D. J. Jasion, M. P. Farrell, D. T. Frey
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 252-256
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16346
Articles are hosted by Taylor and Francis Online.
The National Ignition Campaign (NIC) target consists of precisely machined and assembled components. A subset of the components of this target is the aluminum shielding around the silicon support and cooling arms, which is designed to alleviate harmful unconverted light reflecting from the arms into the laser optics. This NIC target shielding consists of two external shields and four inner shields located between the arms. Recently, we have developed a process to add a plastic coating to the shields with precisely defined edges that can survive pressing the part into a three-dimensional shape. After this process was demonstrated on prototypes, it was further refined to improve yield and is currently being used to fabricate and deliver parts for NIC experiments on a regular basis. The final process that we developed consists of seven steps to fabricate these shields: (1) applying a photolithographed plastic layer to electrically isolate the shields from the electrical traces on the cooling arms, (2) plasma etching to improve adhesion during the subsequent aluminum coating, (3) large-batch electron-beam aluminum coating, (4) laser cutting and custom die cutting to various shapes and specified patterns, (5) utilizing heat pressing techniques that soften the plastic coating enough to be coined into a three-dimensional shape, (6) accurate positioning and bonding of Mylar liners under the tops of the shields, and (7) final characterization. Through these process steps high process yields were achieved against the rigorous NIC requirements.