ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
N. A. Hein, H. L. Wilkens, A. Nikroo, H.-C. B. Chen, H. H. Streckert, K. Quan, J. R. Wall, T. A. Fuller, M. R. Jackson, E. M. Giraldez, S. J. Price, R. J. Sohn, M. Stadermann
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 218-225
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-20
Articles are hosted by Taylor and Francis Online.
By making the hohlraum wall more opaque to the driver energy, the efficiency of X-ray conversion is improved with the addition of depleted uranium (DU) to a gold-only hohlraum [see T. J. Orzechowski et al., Phys. Rev. Lett., Vol. 77, p. 3545 (1996)]. The National Ignition Facility (NIF) point design for ignition requires a DU hohlraum, which is manufactured by General Atomics. The process of creating a hohlraum with multiple layers presents manufacturing challenges. To produce these components many steps are required. The processes for manufacturing an Au-lined DU hohlraum requires single-point diamond turning, sputter deposition, electroplating, chemical etch, and cleaning. These steps combined make a process that yields a fully intact Au-DU layered NIF ignition hohlraum.