ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
H. Xu, K. P. Youngblood, H. Huang, J. J. Wu, K. A. Moreno, A. Nikroo, S. J. Shin, Y. M. Wang, A. V. Hamza
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 202-207
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-16
Articles are hosted by Taylor and Francis Online.
The point design of beryllium capsules includes three Cu-doped layers in a 160-m-thick beryllium shell to achieve the desired X-ray absorption profile. The beryllium capsules were deposited on glow discharge polymer mandrels using a magnetron sputtering process. Cu diffusion during pyrolysis to remove the mandrels after coating has caused nonuniform distribution of Cu along the azimuthal direction due to inhomogeneous diffusion. This nonuniformity along the azimuthal direction could lead to Rayleigh-Taylor instability during capsule implosion. One of the methods to solve this issue is to incorporate a beryllium oxide diffusion barrier layer at the beryllium-Cu-doped-beryllium layer interfaces. In situ and ex situ beryllium oxide layers have proved to be effective in stopping Cu diffusion. This paper will focus on the approaches we have developed to characterize the in situ and ex situ oxide barrier layer thickness by using a combination of Auger electron spectroscopy profiles and Rutherford backscattering spectrometry measurements.