It is well known that control of the intricate surface topography details of the ablator capsule over a wide range of modes is critical for inertial confinement fusion (ICF). Whereas considerable effort has been expended on making the ablator capsule rounder and smoother during its fabrication, it is only more recently that attention has been drawn to particulate contamination on the surface of the capsule that can also contribute to undesirable Rayleigh-Taylor instabilities. In this paper, we explore new methods for cleaning the soft polymeric capsule in the presence of the attached filltube just before its assembly into the final target. These constraints, in conjunction with the extremely demanding specification for the size and the number of particles allowed per specification, present unique challenges and require the implementation of specialized cleaning techniques. Here, we describe the strengths and limitations of these methods and lay out the platform for implementing these into production on the National Ignition Facility (NIF).