ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Trump leaves space nuclear policy executive order for Biden team
A hot fire test of the core stage for NASA’s Space Launch System rocket at Stennis Space Center in Mississippi was not completed as planned. The SLS is the vehicle meant to propel a crewed mission to the moon in 2024. Source: NASA Television
Among the executive orders President Trump issued during his last weeks in office was “Promoting Small Modular Reactors for National Defense and Space Exploration,” which builds on the Space Policy Directives published during his term. The order, issued on January 12, calls for actions within the next six months by NASA and the Department of Defense (DOD), together with the Department of Energy and other federal entities. Whether the Biden administration will retain some, all, or none of the specific goals of the Trump administration’s space nuclear policy remains to be seen, but one thing is very clear: If deep space exploration remains a priority, nuclear-powered and -propelled spacecraft will be needed.
The prospects for near-term deployment of nuclear propulsion and power systems in space improved during Trump’s presidency. However, Trump left office days after a hot fire test of NASA’s Space Launch System (SLS) rocket did not go as planned. The SLS rocket is meant to propel crewed missions to the moon in 2024 and to enable a series of long-duration lunar missions that could be powered by small lunar reactor installations. The test on January 16 of four engines that were supposed to fire for over eight minutes was automatically aborted after one minute, casting some doubt that a planned November 2021 Artemis I mission can go ahead on schedule.
N. A. Antipa, S. H. Baxamusa, E. S. Buice, A. D. Conder, M. N. Emerich, M. S. Flegel, C. L. Heinbockel, J. B. Horner, J. E. Fair, L. M. Kegelmeyer, E. S. Koh, M. A. Johnson, W. L. Maranville, J. S. Meyer, R. Montesanti, J. Nguyen, J. E. Ralph, J. L. Reynolds, J. G. Senecal
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 151-159
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | dx.doi.org/10.13182/FST13-TFM20-38
Articles are hosted by Taylor and Francis Online.
Capsule ablators are precision hollow spheres used in inertial confinement fusion targets used in high-peak-power laser systems such as the National Ignition Facility. These capsules have high surface-quality requirements, and hence a full surface microscopic mapping system has been developed to characterize them. The capsule-fill-tube-assembly mapping system combines a confocal surface-profiling microscope with a nine-axis, high-precision stage system to provide quantitative three-dimensional data over the entire surface of each capsule prior to assembly into the final target. The system measures the individual volumes of features on the capsule surface that are 7.5 m3 and larger with an accuracy of ±10%. The positional accuracy is better than 0.25 deg (1), or [approximately]5 m linearly. The data acquisition and image processing are all highly automated in order to keep pace with throughput demands. The system consists of four primary subsystems: the positioning system, the confocal microscope, the automated acquisition code, and the image processing and data management software.