ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. T. Shmayda, D. R. Harding, V. A. Versteeg, C. Kingsley, M. Hallgren, S. J. Loucks
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 87-94
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16325
Articles are hosted by Taylor and Francis Online.
Debris with footprints smaller than 40 m2 on the outer and inner surfaces with heights of <10 m on outer surfaces and [approximately]1 m on inner surfaces is present on cryogenic targets used for inertial confinement fusion studies on OMEGA. These features form during the gas-filling and cooling processes used to produce cryogenic deuterium (D2) and deuterium-tritium (DT) targets. The amount of debris on the surface has varied since the inception of the Laboratory for Laser Energetics' (LLE's) cryogenic program. The cause of the contamination is attributed to the cryogenic equipment high-vacuum and cleanliness limitations and to the radiolytic degradation of polymers. Empirical observations and a review of the processing conditions suggest that 1 mol of condensable contaminant is sufficient to account for the debris observed on a typical cryogenic target. This translates into a 3-ppm impurity content in the DT fuel.This paper focuses on condensed gases as one source of debris. It is postulated that methane, water, and nitrogen accompany the DT fuel transfer when it is transferred from the uranium storage beds that hold the DT fuel to the permeation cell where the targets are filled.