ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michel Martin, Cyril Gauvin, Géraldine Moll, Olivier Raphaël, Olivier Legaie, Laurent Jeannot
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 82-86
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16324
Articles are hosted by Taylor and Francis Online.
Smooth and uniform solid D-T layers inside a spherical shell are needed to achieve ignition on the Laser Megajoule (LMJ) facility. The thermal environment around the capsule is the key to reach the low-mode D-T layer requirements. During the nineteenth Target Fabrication Meeting in Orlando, Florida (2010), an analytical model was presented to predict the low-mode time evolution of a D-T layer in a capsule caused by a thermal perturbation. The model showed that the dynamical response is ruled by the redistribution time constant. To check the validity of the model, experiments have been done with deuterium layers inside an integrating sphere. The use of an infrared laser to generate a volumetric heating of the deuterium allowed us to tune the conformation time constant. The experimental setup has also been modified to allow or cancel 300-K infrared radiation entering the integrating sphere, producing a local warming on the capsule. Using shadowgraphy techniques, we have been able to follow the dynamical behavior of the deuterium layer. Analyses conclude that the analytical model is right and can be used with confidence.