ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Michel Martin, Cyril Gauvin, Géraldine Moll, Olivier Raphaël, Olivier Legaie, Laurent Jeannot
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 82-86
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16324
Articles are hosted by Taylor and Francis Online.
Smooth and uniform solid D-T layers inside a spherical shell are needed to achieve ignition on the Laser Megajoule (LMJ) facility. The thermal environment around the capsule is the key to reach the low-mode D-T layer requirements. During the nineteenth Target Fabrication Meeting in Orlando, Florida (2010), an analytical model was presented to predict the low-mode time evolution of a D-T layer in a capsule caused by a thermal perturbation. The model showed that the dynamical response is ruled by the redistribution time constant. To check the validity of the model, experiments have been done with deuterium layers inside an integrating sphere. The use of an infrared laser to generate a volumetric heating of the deuterium allowed us to tune the conformation time constant. The experimental setup has also been modified to allow or cancel 300-K infrared radiation entering the integrating sphere, producing a local warming on the capsule. Using shadowgraphy techniques, we have been able to follow the dynamical behavior of the deuterium layer. Analyses conclude that the analytical model is right and can be used with confidence.