A high-temperature (>340 eV) half-hohlraum target platform has been developed on the National Ignition Facility (NIF) to enable the study of diffusive supersonic radiation flow in low-density foams. The impact of the significantly higher energy available on the NIF on the requirements of target fabrication and hohlraum characterization is discussed. High-quality experimental data show the successful qualification of the hohlraum platform and tailoring of the spectral content used to drive the radiation flow. Numerical and analytic models of the hohlraum are used to explore the sensitivity of the platform to experimental uncertainties.