ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yoshi Hirooka
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1040-1044
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1632
Articles are hosted by Taylor and Francis Online.
For the successful steady state operation of deuterium-tritium (DT) fusion reactors, helium (He) ash needs to be removed continuously from the burning core, along with unburned hydrogenic fuel particles, to sustain the power generation. This will require enormous particle pumping capabilities despite the fact that helium is the most difficult gas to be pumped by means of cryogenic condensation. In the present work, zero-dimensional, four-reservoir (core-plasma, SOL-plasma, gas-phase, and wall material) global particle balance modeling has been conducted for both DT-fuel and He-ash particles. Modeling results indicate that, for the density control of He-ash particles in the burning core, passive wall pumping via codeposition with eroded plasma-facing materials would definitely be necessary to compensate for the lack of pumping speed provided by conventional vacuum equipment. Recent experimental data on helium codeposition with lithium have been used as input for modeling and results indicate that lithium-gettered moving-surface plasma-facing components can meet the He-ash pumping requirements.