ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
Kenji Kotoh, Kazuhiko Kudo
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 995-1001
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1624
Articles are hosted by Taylor and Francis Online.
Although the method of adsorption using synthetic zeolites has been applied to the systems of removal or/and recovery of tritiated water vapor from tritium handling atmospheres or process gases, the dynamic behavior of hydrogen-isotopic water molecules in zeolites is not yet sufficiently elucidated because the interaction between strongly polarized water molecules and zeolite crystalline surfaces is complicated. Considering the basic definition of mass transfer with the chemical potential gradient as driving force for diffusion, we obtained an expression of diffusivity depending on temperature and concentration, derived from the characteristics of adsorption equilibrium as a function of adsorption potential, where the diffusivity is described in relation to the mobility corrected here by deriving a term of activation energy.Experimental diffusion coefficients for tracer HTO in H2O adsorbed in zeolite crystals, measured under various conditions of temperature and vapor pressure, indicate a variety of values. The variety, however, can be clearly interpreted in accordance with this expression.