ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
B. J. Kern, D. L. Sadowski, S. M. Ghiaasiaan, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 958-962
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1618
Articles are hosted by Taylor and Francis Online.
Compressible two-phase (liquid/gas) jets have been proposed as a means of protecting the chamber walls in high-yield, low repetition rate, Z-Pinch IFE reactor systems. The aspect ratio (height-to-thickness/diameter ratio) of such jets is expected to be large, so that the void fraction may vary significantly along the flow direction. An experimental investigation was conducted to determine the effect of various design and operational parameters on the void fraction distribution within a planar, downward-flowing, two-phase (liquid/gas) free jet. An air/water jet with an initial cross section of 1.0 cm × 10.0 cm was used, and different liquid inlet velocities and gas-to-liquid volumetric flow rate ratios were tested. Local void fractions at different locations along the width and length of the jets were measured by gamma-ray densitometry. The results indicated that buoyancy caused significant slip between the two phases, leading to the conclusion that homogeneous two-phase flow models cannot accurately model the behavior of such jets. The data obtained in this investigation can be used to validate predictions of mechanistic models for jet dynamics and shock attenuation.