ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Takuya Goto, Daisuke Ninomiya, Yuichi Ogawa, Ryoji Hiwatari, Yoshiyuki Asaoka, Kunihiko Okano
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 953-957
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1617
Articles are hosted by Taylor and Francis Online.
The design of a laser fusion reactor with a dry wall chamber has been carried out. According to a simple point model calculation, sufficient pellet gain (G > 100) can be achieved with the injection energy of 400kJ under relatively conservative parameters ( = 2, c = 0.05, h = 0.2). Assuming the pulse heat load limit of a dry wall to be 2J/cm2, chamber radius of R = 5.64m is achievable. 1-D thermal analysis also supports the feasibility of this design. Then a medium scale plant (400MWe electric output) can be designed with moderate construction cost, which suits for the first-step reactor, if the laser repetition rate can be increased to 30 Hz. Since laser fusion reactors have flexibility in changing its output, this design enables them to be in flexible use according to the time-varying electric demand as the present fossil fuel power plants. This design is remarkable because it gives a new property to the fusion reactors.