ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Takuya Goto, Daisuke Ninomiya, Yuichi Ogawa, Ryoji Hiwatari, Yoshiyuki Asaoka, Kunihiko Okano
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 953-957
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1617
Articles are hosted by Taylor and Francis Online.
The design of a laser fusion reactor with a dry wall chamber has been carried out. According to a simple point model calculation, sufficient pellet gain (G > 100) can be achieved with the injection energy of 400kJ under relatively conservative parameters ( = 2, c = 0.05, h = 0.2). Assuming the pulse heat load limit of a dry wall to be 2J/cm2, chamber radius of R = 5.64m is achievable. 1-D thermal analysis also supports the feasibility of this design. Then a medium scale plant (400MWe electric output) can be designed with moderate construction cost, which suits for the first-step reactor, if the laser repetition rate can be increased to 30 Hz. Since laser fusion reactors have flexibility in changing its output, this design enables them to be in flexible use according to the time-varying electric demand as the present fossil fuel power plants. This design is remarkable because it gives a new property to the fusion reactors.