ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Ryoji Hiwatari, Yoshiyuki Asaoka, Kunihiko Okano, Seiji Mori, Hirokazu Yamada, Takuya Goto, Yuichi Ogawa
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 911-915
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1609
Articles are hosted by Taylor and Francis Online.
The fast ignition method enables a reduction of the laser power required to achieve a large energy gain. This suggests consideration of a new inertial confinement fusion power plant concept, which has a small fusion pulse and a high repetition laser with a dry wall chamber. To establish the potential of the fast ignition method and to make clear the critical issues, a Fast Ignition ICF reactor concept with a Dry Wall chamber and a High Repetition Laser (FI-DWHRL concept) was previously proposed. The maintenance approach for this Fast Ignition ICF reactor concept is preliminary considered and its critical issues are described in this paper. The large cask and the large maintenance port for replacing the blanket sectors are applied to this Fast Ignition ICF reactor concept. The first wall and blanket system is divided into 20 sectors and all beam lines go between blanket sectors. The vacuum vessel is located outside the blanket system and this vacuum vessel also serves as the tritium boundary. To replace the final optical device, 6 access corridors are placed along the reactor room. Finally, critical issues on this maintenance approach are listed.