ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Hyoungil Kim, Jaafar El-Awady, Jennifer Quan, Shahram Sharafat, Vijay Gupta, Nasr Ghoniem
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 875-879
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1603
Articles are hosted by Taylor and Francis Online.
The High Average Power Laser (HAPL) project is pursuing development of an IFE power reactor using a solid first wall chamber. Tungsten has been chosen as the primary candidate armor material protecting the low activation ferritic steel chamber wall structure. The tungsten armor is less than 1-mm thick and is applied by vacuum plasma spraying (VPS). The failure strength of the tungsten-armor is critical, which is measured using a state-of-the-art spallation technology developed at UCLA. A nano-second laser is used to propagate a compression/tension stress wave through the composite layered structure. The tensile strength in the coating is then related to the displacement velocity of the free surface of the tungsten coating. VPS tungsten coated steel samples were tested using the laser spallation technique and coating strengths were evaluated and are reported.