ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
J. Takeuchi, S. Satake, T. Kunugi, T. Yokomine, N. B. Morley, M. A. Abdou
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 860-864
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1600
Articles are hosted by Taylor and Francis Online.
An investigation of MHD effects on a Flibe (Li2BeF4) simulant fluid has been conducted under the US-Japan JUPITER-II collaboration program using "FLIHY" pipe flow facility at UCLA. The present paper reports a development of unique experimental techniques using aqueous solution of potassium hydroxide as a Flibe simulant. In order to apply a particle image velocimetry (PIV) technique for magnetic field condition, special optical devices were developed. The PIV measurements of MHD turbulent pipe flow at Re = 5300 were performed, and modification of the mean flow velocity as well as turbulence suppression was observed. A flat velocity profile in the pipe center and a steep velocity gradient in the near-wall region at Ha = 20 exhibits typical characteristics of Hartmann flow.