ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masaaki Satake, Kazuhisa Yuki, Hidetoshi Hashizume
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 821-826
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1593
Articles are hosted by Taylor and Francis Online.
In a liquid blanket system, MHD effect or low heat-transfer property of high Prandtl number fluid makes it difficult to remove high heat load, therefore utilization of ducts with inserted rods or sphere-packed pipes has been proposed to enhance the heat transfer. It is important to reveal influence of arrangement of the rods or spheres upon the heat transfer characteristics. In this study, the influence of a distance between two rods in wall-normal and streamwise directions upon the flow structures is clarified by numerical simulation. When the rod is approaching to another rod in the wall-normal direction, Karman's vortex street is disrupted. On the other hand, the distance between the rod and the wall is shorter than a certain value, a separation occurs on the wall and then the separation position does not move when the distance is much smaller than that value. Moreover, the pressure drop depends on the distance between two rods, and then there exists the minimum pressure drop. When the distance between the two rods becomes shorter in the streamwise direction, the wake behind the upstream rod changes from Karman's vortex street to twin vortexes and the pressure drop decreases. The turbulent kinetic energy near the wall in case of Karman's vortex street, which is generated by the upstream rod, is higher than that in case of twin vortex.